Assigning Deep Lexical Types Using Structured Classifier Features for Grammatical Dependencies
نویسندگان
چکیده
Deep linguistic grammars are able to provide rich and highly complex grammatical representations of sentences, capturing, for instance, long-distance dependencies and returning a semantic representation. These grammars lack robustness in the sense that they do not gracefully handle words missing from their lexicon. Several approaches have been explored to handle this problem, many of which consist in pre-annotating the input to the grammar with shallow processing machine-learning tools. Most of these tools, however, use features based on a fixed window of context, such as n-grams. We investigate whether the use of features that encode discrete structures, namely grammatical dependencies, can improve the performance of a machine learning classifier that assigns deep lexical types. In this paper we report on the design and evaluation of this classifier.
منابع مشابه
Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity
Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...
متن کاملAssigning Deep Lexical Types
Deep linguistic grammars provide complex grammatical representations of sentences, capturing, for instance, long-distance dependencies and returning semantic representations, making them suitable for advanced natural language processing. However, they lack robustness in that they do not gracefully handle words missing from the lexicon of the grammar. Several approaches have been taken to handle...
متن کاملTowards Automatic Argument Diagramming of Multiparty Meetings
This paper focuses on a lesser studied multiparty meetings processing task of argument diagramming. Argument diagramming aims at tagging the utterances and their relationships to represent the flow and structure of reasoning in conversations, especially in discussions and arguments. In this work, we tackle the problem of automatically assigning node types to user utterances using several lexica...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012